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We examine the effects of a fluid yield stress on the classical Rayleigh–Bénard insta-
bility between heated parallel plates. The focus is on a qualitative characterization
of these flows, by theoretical and computational means. In contrast to Newtonian
fluids, we show that these flows are linearly stable at all Rayleigh numbers, Ra,
although the usual linear modal stability analysis cannot be performed. Below the
critical Rayleigh number for energy stability of a Newtonian fluid, RaE , the Bingham
fluid is also globally asymptotically stable. Above RaE , we provide stability bounds
that are conditional on Ra − RaE , as well as on the Bingham number B , the Prandtl
number Pr, and the magnitude of the initial perturbation. The stability characteristics
therefore differ considerably from those for a Newtonian fluid. A second important
way in which the yield stress affects the flow is that when the flow is asymptotically
stable, the velocity perturbation decays to zero in a finite time. We are able to provide
estimates for the stopping time for the various types of stability. A consequence of
the finite time decay is that the temperature perturbation decays on two distinctly
different time scales, i.e. before/after natural convection stops. The two decay time
scales are clearly observed in our computational results.

We are also able to determine approximate marginal stability parameters via
computation, when in the conditional stability regime, although computation is not
ideal for this purpose. When just above the marginal stability limits, perturbations
grow into a self-sustained cellular motion that appears to resemble closely the
Newtonian secondary motion, i.e. Rayleigh–Bénard cells. When stable, however, the
decaying flow pattern is distinctly different to that of a Newtonian perturbation.
As t → ∞, a stable Newtonian perturbation decays exponentially and asymptotically
resembles the least stable eigenfunction of the linearized problem. By contrast, as
t approaches its stopping value, the Bingham fluid is characterized by growth of
a slowly rotating (almost) unyielded core within each convection cell, with fully
yielded fluid contained in a progressively narrow layer surrounding the core. Finally,
preliminary analyses and remarks are made concerning extension of our results to
inclined channels, stability of three-dimensional flows and the inclusion of residual
stresses in the analysis.

† Author to whom correspondence should be addressed.
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1. Introduction
Non-Newtonian fluids occur in a very broad range of industrial and natural flows,

ranging from polymer processing, the construction of oil wells, processing of foodstuffs
to lava and mud flows. The term non-Newtonian is all-encompassing and describes
various different effects. For a great many fluids and flow situations, the principal
deviation from Newtonian behaviour manifests in a nonlinear dependence of shear
rate on the rate of strain (see e.g. Bird, Armstrong & Hassager 1987, § 2.2). Such
fluids are termed generalized Newtonian fluids. Two key phenomenological effects
are: (i) shear-thinning/thickening (i.e. the viscosity may decrease or increase with rate
of strain); (ii) fluids may exhibit a yield stress (i.e. below a certain shear stress there
is a zero strain rate), and these are termed visco-plastic fluids. Often, generalized
Newtonian behaviour is further complicated by other effects, e.g. thixotropy, visco-
elasticity, elastic creep below the yield stress. However, there are still wide parameter
ranges in which the shear rheology described by a generalized Newtonian model is
a good description and such models are consequently used widely in industrial and
geophysical applications.

This paper considers the onset of natural convection for a yield stress fluid in
the Rayleigh–Bénard context. Such fluids were first considered by Bingham (1922),
after whom the most commonly used model is named. Later Bingham fluids were
studied more extensively by Oldroyd (1947), Prager (1954), Mossolov & Miasnikov
(1965, 1966) and by Duvaut & Lions (1976). Different yield stress materials and
an overview of the known analytical solutions to the Navier–Stokes equations for
yield-stress fluids were presented in the review by Bird, Dai & Yarusso (1983).
Slightly more complex visco-plastic models are the Herschel–Bulkley and Casson
models.

There appears to be no study of Rayleigh–Bénard convection for Bingham fluids
in the literature. At the outset this is surprising given the wide occurrence of such
fluids in application areas where natural convection is important, e.g. geophysics
(magma/mantle convection), chocolate manufacture (and many other less palatable
food products that have yield stresses), pulp processing and drying, oilfield cementing
and drilling, the flow of heavy oils in porous media, construction cementing, nuclear
safety, baking. The lack of attention to the problem is easier to understand once
the key difficulty is understood. Simplistically, a yield stress fluid is a fluid with an
effective viscosity η̂, given by:

η̂ = µ̂ +
τ̂Y

ˆ̇γ
,

where µ̂ and τ̂Y are, respectively, the plastic viscosity and yield stress of the fluid; the
rate of strain is denoted ˆ̇γ . In the Rayleigh–Bénard paradigm, the base flow is static,
with zero rate of strain and hence the effective viscosity is infinite everywhere. If we
follow the classical approach of linear stability, we have to perturb about a fluid with
infinite effective viscosity which is obviously problematic.

For other purely viscous generalized Newtonian fluids (e.g. power-law fluids,
Carreau fluids, etc.), the same problem does not exist. Similarly, for visco-elastic fluids
it is possible to progress by classical linear stability. Much of the study of Rayleigh–
Bénard convection for Newtonian (and these other) fluids is based on linear modal
theories (e.g. onset, weakly nonlinear perturbations, pattern formation). Therefore, the
lack of a linear modal theory for yield stress fluids is a major handicap, and probably
explains why the problem has not been studied. Once we understand this barrier, it
becomes clear that other methods must be employed, and here we use the only two
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methods that appear to be applicable for the problem: energy stability theory and
numerical simulation.

Therefore, although a generalized Newtonian fluid is one of the simplest non-
Newtonian models and although the Bingham fluid is the simplest yield stress fluid to
study, the Rayleigh–Bénard stability problem is arguably much harder to study than
for ‘more complex’ non-Newtonian fluids. Our aims for the paper are consequently
more modest than might be expected when studying the Rayleigh–Bénard paradigm.
First, we aim to understand qualitatively the nature of the stability of the base state,
for a fluid with a finite yield stress. For example, although there is no classical linear
stability eigenvalue problem, is the flow still stable or unstable to sufficiently small
perturbations and how is the stability characterized? Secondly, we would like to
demonstrate computationally that there are indeed convective instabilities in these
flows, above certain instability thresholds.

There is much literature on the Rayleigh–Bénard problem for Newtonian fluids, and
numerous interesting extensions; see, for example, Koschmieder (1993) for an overview
and review. Rayleigh–Bénard convection has also been studied for various viscous and
visco-elastic non-Newtonian fluids (e.g. Khayat 1995a–c, 1996; Martinez-Mardones,
Tiemann & Walgraef 1999, 2000; Park & Ryu 2001a,b; Abu-Ramadan, Hay & Khayat
2003), but not for yield stress fluids. Discarding the issue of stability/onset, one can
also find various studies of forced and natural convection with yield stress fluids (e.g.
Round & Yu 1993; Nouar, Devienne & Lebouche 1994; Patel & Ingham 1994; Soares
et al. 1999, 2003).

A key property of yield stress fluid flows is that static steady-state solutions are
frequently both nonlinearly stable and exhibit decay of the perturbations in a finite
time. This was first demonstrated for the case of a one-dimensional duct flow by
Glowinski, Lions & Trémolières (1981) and Glowinski (1984). Finite time decay
results are also proved straightforwardly for various viscometric flows for which the
yield limits are known (see e.g. Huilgol, Mena & Piau 2002). In the different physical
context of nonlinear diffusion filtering in image processing (but with analogous
mathematics), visco-plastic stopping time estimates have been used within a multiple
scales framework, to predict when noise is optimally removed from an image (see
Frigaard, Ngwa & Scherzer 2003).

In this paper, we extend finite time decay results to a much broader class of
flows, namely those with temperature coupling via buoyancy. Although focused at the
Rayleigh–Bénard problem, this serves as a model problem for a much wider range
of practically relevant applications. The implication of a finite time decay is that
thermal convection stops after a certain known time. This has particular relevance
for the design of ‘smart’ thermal switching devices, in which the heat transfer may
be switched on/off by control of the yield stress magnitude, for example, by use of
electro-rheological or magneto-rheological fluids, (typically the conductive heat flux
across the Rayleigh–Bénard cell will be significantly smaller than the convective heat
flux). The idea of controlling Rayleigh–Bénard convection for Newtonian fluids is not
new. There has been extensive study over many years by Bau, Tang and latterly Howle
(and their co-workers), which is focused at feedback and active control of Rayleigh–
Bénard convection via a variety of methods (e.g. Singer & Bau 1991; Tang & Bau
1993, 1994, 1996; Howle 1997, 2000; Wagner, Bertozzi & Howle 2003). However,
apart from the notion of flow control and control theory methodology (which we do
not deal with here), these lend little to our study.

Finally, we note that finite time decay is limited to static stability of yield stress
fluids. There have been various studies of the hydrodynamic stability of yield stress
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fluids, usually Bingham fluids, in configurations where the underlying base flow
is moving, for example, the linear stability studies of Graebel (1964), Georgievskii
(1993), Frigaard, Howison & Sobey (1994), Frigaard (2001), Frigaard & Nouar (2003),
Peng & Zhu (2004), Landry et al. (2006), Métivier, Nouar & Brancher (2005), and
the nonlinear stability of Nouar & Frigaard (2001). These all lead to exponential
(viscous) decay when stable. The yield stress influences the stability limits and the
exponential decay rates, but finite time decay is not found. For the linear stability
studies, it is possible to linearize the Navier–Stokes equations in the yielded regions
of the base flow, unlike here.

A brief outline of the paper is as follows. In § 2, we outline the Rayleigh–
Bénard problem for a Bingham fluid, introduce the steady-state solution and stability
equations. Our formal analytical results are in § 3. We deal with linear stability, global
energy stability and conditional stability, in sequence. Section 4 presents computational
results. A brief description is given of the methodology and this is followed by results
that are illustrative of our analysis. The paper concludes with a section in which we
discuss the extensions of our results to different geometries and boundary conditions,
the incorporation of residual stresses and how the analysis must be modified for
inclined channels.

2. The Rayleigh–Bénard paradigm
We consider here the simplest Rayleigh–Bénard problem with a yield stress fluid,

namely that in which a Bingham fluid fills the space between two horizontal plates, the
lower of which is heated. Although we specify the problem in three-dimensions, our
analysis assumes that the flow instability is two-dimensional. This approach enables
analysis (and later computation) to be performed in the most straightforward manner.
Later, see § 5, we shall discuss three-dimensional perturbations.

Consider a three-dimensional cell, Ω , periodic in (x, y)-directions and bounded in
the z-direction by plates at z = 0 and z = 1. The dimensionless Navier–Stokes and
energy equations (assuming the Boussinesq approximation), are:

1

Pr

Dui

Dt
= − ∂p

∂xi

+
∂τij

∂xj

+ Raδiz,

∂ui

∂xi

= 0,

DT

Dt
=

∂2T

∂x2
j

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

for i, j = 1, 2, 3, with (x1, x2, x3) = (x, y, z), where D/Dt denotes the material deri-
vative. A Bingham fluid is the simplest yield stress fluid, with constitutive relationship:

τij =

(
1 +

B

γ̇

)
γ̇ij iff τ > B,

γ̇ = 0 iff τ � B,

⎫⎬
⎭ (2.2)

where

γ̇ =
√

1
2
γ̇ij γ̇ij , τ =

√
1
2
τij τij .

The rate-of-strain tensor γ̇ij is defined by:

γ̇ij =
∂ui

∂xj

+
∂uj

∂xi

.
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There are three dimensionless groups governing (2.1). These are:

Pr =
ν̂

α̂
, Ra =

β̂ĝ
T̂ L̂3

α̂ν̂
, B =

τ̂Y

ρ̂β̂ĝ
T̂ L̂
.

The Prandtl number, Pr, and Rayleigh number, Ra, are well known. The Bingham
number, B , here represents the ratio of yield stress to buoyancy stresses. (Sometimes
this is called the Oldroyd number, or yield number. If we were to define a velocity
scale by balancing buoyancy and viscous stresses, then B would be the ratio of yield
to viscous stresses, which is the usual definition of the Bingham number.) The various
dimensional quantities above (denoted with a ·̂ symbol), are defined as follows: ν̂ is
the kinematic viscosity (based on the plastic viscosity µ̂), α̂ is the thermal diffusivity;
β̂ is the coefficient of thermal expansion, ĝ is the acceleration due to gravity, 
T̂ is
the temperature difference between plates, L̂ is the vertical separation of the plates,
τ̂Y is the fluid yield stress, ρ̂ is the fluid density.

Boundary conditions at the plates are:

u = v = w = 0 at z = 0, 1, (2.3)

T = 1 at z = 0, T = 0 at z = 1. (2.4)

The velocity, pressure and temperature are assumed to be periodic in the (x, y)-
directions. Below, we shall suppress the y-direction and consider only two-dimensional
perturbations. For these, our periodic cell is assumed to extend over x ∈ (0, l).

2.1. Steady-state solution

The system (2.1)–(2.4) has a steady stratified solution: (U, V, W, P, T ) given by

U = V = W =0, P =p0 − Ra
(1 − z)2

2
, T =1 − z. (2.5)

This is the basic state of rest of the fluid, in which buoyancy is balanced by hydrostatic
pressure, and is the same base state as for the Newtonian fluid (B = 0). By virtue of
(2.2), even though the velocity is fully determined in the steady state, the shear stress
is not, i.e. the shear stress can assume any value below B . We therefore impose:

τij = 0. (2.6)

In § 5.2, we will consider how residual stresses in the static state, may be incorporated
into our results.

2.2. Stability equations

We assume the steady solution (2.5) is disturbed by a two-dimensional perturbation:

(U + u, W + w, P + p, T + θ) .

We subtract the x-momentum, z-momentum and energy equations for the steady
state, from those for the perturbed state, multiply by (u, w, θ), and integrate over Ω:

Ω = {(x, z) ∈ (0, l) × (0, 1)} .

Under the assumptions of incompressibility, boundary conditions (2.3)–(2.4), and
periodicity at x = 0, l, we derive the following energy equations:

1

Pr

dH

dt
= Ra〈wθ〉 − B〈γ̇ 〉 − 〈γ̇ 2〉, (2.7)

dK

dt
= 〈wθ〉 − 〈|∇θ |2〉, (2.8)
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where

〈f 〉 =

∫
Ω

f dx, H = 1
2
〈u2〉, K = 1

2
〈θ2〉,

for u = (u, w). We note that these are the usual energy equations: (2.7) for evolution
of the kinetic energy of the perturbation H (t); (2.8) for evolution of the internal
energy of the perturbation K(t). The only difference from the Newtonian problem is
inclusion of the term B〈γ̇ 〉 in (2.7). Energy equations of the same form are found if
three-dimensional perturbations are considered.

3. Stability analysis
The remainder of our stability analysis concerns the energy equations (2.7) and

(2.8). For a purely viscous (or even visco-elastic) fluid, a classical approach would
involve linearizing about the steady state and deriving conditions under which the
linearized equations admit stable/unstable eigenmodes. As we have discussed in § 1,
such an approach does not help here. When the base state is static, the rate of
strain of the base state is zero, and hence the effective viscosity is infinite, so that
linearization is not possible. If instead we consider a linear perturbation of the stress
tensor, for finite B and zero residual stresses, the perturbed stress is also below the
yield value. Hence, this also does not lead to a stability problem, but suggests linear
stability w.r.t. stress perturbations. Weakly nonlinear theories are extended from the
least stable modes of the linear theory, and therefore are of little use for yield stress
fluids. This explains our reliance on the energy method, (2.7) and (2.8), i.e. it is the
only method left open to us.

3.1. Linear stability

We consider first the linear stability of the Rayleigh–Bénard system to two-
dimensional disturbances, via energy estimates. Our analysis is summarized in the
following result.

Theorem 1. Let E = (1/Pr)H +K be the total energy of the Rayleigh–Bénard system.
There exist constants CP and CT S depending only on the dimension and the domain of
integration, such that

E(0) <
1

2

(
BCTS

Ra + 1

)2

implies:
(i) Exponential decay of the total energy E:

E(t) � E(0) e−αt for t � 0.

(ii) Finite time decay of ‖u‖:

‖u‖(t) �

(
‖u‖(0) +

β

αu

)
e−αut − β

αu

for 0 � t � t0

and

‖u‖(t) = 0 for t � t0.

(iii) Exponential decay of ‖θ‖:

‖θ‖(t) �
BCTS

Ra + 1
e−αt/2 for 0 � t � t0
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and

‖θ‖(t) �
BCTS

Ra + 1
e−αt0/2−C̃p(t−t0), for t � t0.

Here

α = 2min(PrCP , C̃p), t0 =
1

αu

ln

(
1 +

αu

βPr
‖u‖(0)

)
,

with

β =
PrBCTS

Ra + 1
, αu = PrCP .

Proof. (i) Combining (2.7) and (2.8), we have

dE

dt
= (Ra + 1)〈wθ〉 − B〈γ̇ 〉 − 〈γ̇ 2〉 − 〈|∇θ |2〉. (3.1)

By the Cauchy–Schwarz inequality,

〈wθ〉 � ‖w‖‖θ‖ � ‖u‖‖θ‖, (3.2)

where ‖ · ‖ represents the L2 norm of the corresponding function. On the other hand,
the Poincaré inequality and Korn’s inequality imply that

C̃P 〈θ2〉 � 〈|∇θ |2〉, (3.3)

CP 〈u2〉 � 〈|∇u|2〉 = 〈γ̇ 2〉, (3.4)

where C̃P and CP are considered to be the optimal constants in the Poincaré inequality,
which depend only on the dimension and on the domain of integration.

Owing to the boundary conditions, we note that unless u = 0, the velocity u does
not represent a rigid-body motion. For such u 	= 0, it is shown in Témam & Strang
(1980) that there exists a constant CT S such that

CT S‖u‖ � 〈γ̇ 〉, (3.5)

where again CT S depends only on the dimension and the domain of integration. The
estimates (3.2)–(3.5) yield

dE

dt
� (Ra + 1)‖u‖‖θ‖ − BCTS‖u‖ − CP 〈u2〉 − C̃P 〈θ2〉

� [(Ra + 1)‖θ‖ − BCTS]‖u‖ − 2 min(PrCP , C̃P )E,

for t � 0. Hence, with α = 2min(PrCP , C̃P ),

dE

dt
(0) < −αE(0) if ‖θ‖(0) <

BCTS

Ra + 1
.

This implies that there exists δ > 0, such that

E(t) < E(0) for 0 < t < δ

and consequently

‖θ‖(t) �
√

2E(t) <
√

2E(0) for 0 < t < δ.

Therefore, for 0 < t < δ,

dE

dt
(t) < −αE(t)
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whenever

E(0) <
1

2

(
BCTS

Ra + 1

)2

. (3.6)

By integrating,

E(t) � E(0)e−αt for 0 � t < δ.

By repeating the above argument, starting from t = δ/2, we can keep enlarging the
time interval in which the exponential decay of E(t) holds and conclude that

E(t) � E(0)e−αt for t � 0.

(ii) We substitute estimates (3.2), (3.4) and (3.5) into (2.7), and further assume that
(3.6) holds. If ‖u‖ > 0, for t � 0 we have:

1

Pr

d‖u‖
dt

�
(
Ra‖θ‖ − BCTS

)
− Cp‖u‖

d‖u‖
dt

�

(
Ra

Ra + 1
e−αt/2 − 1

)
PrBCTS − PrCp‖u‖ (3.7)

� −PrBCTS

Ra + 1
− PrCp‖u‖. (3.8)

If we denote

β =
PrBCTS

Ra + 1
, αu =PrCP ,

then (3.8) implies, via Gronwall’s lemma that:

‖u‖(t) �

(
‖u‖(0) +

β

αu

)
e−αut − β

αu

for t � 0. (3.9)

Setting

t0 =
1

αu

ln

(
1 +

αu

β
‖u‖(0)

)
, (3.10)

we see that (3.9) yields

‖u‖(t) = 0 for t � t0.

(iii) From our decay estimate for E(t) in (i), we have directly:

‖θ‖(t) �
√

2E(t) �
BCTS

Ra + 1
e−αt/2 for t � 0.

However, for t � t0, we have seen that the velocity is zero. Hence, using estimate (3.4)
in (2.8), we have the faster decay estimate:

d‖θ‖
dt

� −C̃P ‖θ‖ for t � t0.

We then conclude again by Gronwall’s lemma that

‖θ‖(t) � ‖θ‖(t0) e−C̃P t �
BCTS

Ra + 1
e−αt0/2−C̃P (t−t0) for t � t0.

Remark 1. Note that linear stability follows from the condition:

E(0) <
1

2

(
BCTS

Ra + 1

)2
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for any finite B > 0, i.e. for any finite positive yield stress. To see this, assume that
‖θ‖(0) = ε and ‖u‖(0) = εKu, for some arbitrary O(1) constant, Ku. Then by linear
stability we mean that perturbations decay for infinitesimally small ε → 0. Here, we
clearly have the result that the flow is stable if:

ε <
BCTS

Ra + 1

(
Ku

Pr
+ 1

)−1/2

, (3.11)

i.e. we also have stability for small finite ε, or weak conditional stability. Viewed
another way, for given ε there is a stability bound on B , of form B � O(εRa).

The result is therefore clearly much stronger than that given by the usual linear
stability analysis. In addition to decay, we have the decay of the velocity perturbation
in a finite time, i.e. this is more than asymptotically stable. We may summarize the
results in the following statements:

(a) For any finite strictly positive B (yield stress), the steady state is linearly asymp-
totically stable for all Ra and Pr.

(b) A sufficiently small finite perturbation, satisfying (3.11), is asymptotically stable.
(c) In both cases, stability is characterized by decay of the velocity to zero within

a finite time t0. The temperature decay is exponential, but the rate increases after
convection has switched off at t = t0.

Remark 2. The finite time decay time scale in (3.10) is simplest to state, but is
conservative. If αu > α/2, then we have for t � 0

‖u‖(t) �

(
‖u‖(0) +

β̃

αu

− β̃Ra

(αu − α/2)(Ra + 1)

)
e−αut +

β̃Ra e−αt/2

(αu − α/2)(Ra + 1)
− β̃

αu

, (3.12)

which decays to zero at t < t0; here, β̃ = PrBCTS. On the other hand, if αu = α/2,
then the estimate

‖u‖(t) �

(
‖u‖(0) +

β̃

αu

+
β̃Ra

Ra + 1
t

)
e−αut − β̃

αu

, (3.13)

holds for t � 0. Again the decay to zero is at a time t < t0.
Focusing on (3.10), we see that t0 decreases if B increases, or Pr increases, or Ra

decreases, or if ‖u‖(0) decreases, all of which effects are physically intuitive.

3.2. Nonlinear stability

From the results of Theorem 1, we are led to question two things. First, we have seen
that the linear stability results certainly extend to small finite perturbations. Therefore,
we ask whether the finite limit of the perturbation is optimal in Theorem 1, or whether
it can be improved in some way. For example, for Newtonian fluids, it is known that
the flow is globally asymptotically stable for Ra <RaE , where RaE depends upon the
domain and boundary conditions imposed. Secondly, we have observed that decay of
the velocity to zero occurs over a finite time scale, whereas for a Newtonian fluid, the
decay time scale is infinite (exponential decay). We therefore also question whether
finite time decay of the velocity holds true for all (Ra, Pr, B) and all initial conditions
for which there is some form of stability? These are the goals of this section. First,
we review the known results for Newtonian fluids.

3.2.1. Summary of Newtonian results

A good overview of the key results for the Rayleigh–Bénard problem for a
Newtonian fluid may be found in Koschmieder (1993). The energy stability of the
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Rayleigh–Bénard system is reviewed by Joseph (1976), which also covers the earlier
results of Ukhovskii & Iudovich (1963), Sani (1964), Joseph (1965) and Joseph (1966).
From these, it is known that there exists a critical Rayleigh number RaE > 0 such
that:

dE

dt
=

{
< 0 if Ra <RaE,

0 if Ra = RaE,

where the energy E(t) is defined as

E(t) =
1

Pr
H (t) + RaEK(t).

For the Newtonian results, the energy limit, Ra = RaE , is identical with the
linear stability limit, RaL. This is because (i) the base state has zero velocity;
(ii) linear marginal stability for the Rayleigh–Bénard problem involves the exchange
of stabilities. Under these conditions, the eigenfunction that satisfies the linear stability
equations at marginal stability also satisfies the variational equations of the energy
stability problem. Hence, RaE = RaL. In fact, there are a range of hydrodynamic
stability problems that share this characteristic (Joseph 1976). The critical Rayleigh
number limit for the Newtonian fluid with (rigid–rigid) Dirichlet conditions at z =0, l,
is RaE = RaL = 1707.8 (see Koschmieder 1993). For rigid–free and free–free boundary
conditions, the linear limits are RaL = 1100.7 and RaL = 657.5, respectively.

We assume below that the sets of admissible functions for the Newtonian and
Bingham fluid problems are the same, and denote this set by S. (For the Bingham
problem we would expect that each of u, w, θ are in closed subsets of H 1(Ω), defined
by the specific boundary and periodicity conditions, and further restricted by the
divergence-free constraint in the case of the velocity components. The variational
results for the Newtonian fluid, which we shall make comparison with, do not rely on
further regularity than H 1(Ω). The boundary and periodicity conditions are identical
for Newtonian and Bingham problems.) First, let us consider energy stability for
the Newtonian fluid, setting B = 0 in (2.7)–(2.8). For ν > 0, consider the energy Eν(t)
defined by:

Eν(t) =
H (t)

Pr
+ νK(t).

On summing (2.7) and (2.8), we see that Eν(t) satisfies the following differential
inequality.

d

dt
Eν � −[〈γ̇ 2〉 + ν〈|∇θ |2〉]

[
1 − (Ra + ν) sup

(ũ,θ̃ )∈S

{
〈w̃θ̃〉

〈 ˜̇γ 2〉 + ν〈|∇θ̃ |2〉

}]
. (3.14)

We define G(ν) by:

1

G(ν)
= sup

(ũ,θ̃ )∈S

{
〈w̃θ̃〉

〈 ˜̇γ 2〉 + ν〈|∇θ̃ |2〉

}

and note that by rescaling θ̃ , for any ν1, ν2 we have:
√

ν1

G(ν1)
=

√
ν2

G(ν2)
.

Furthermore, setting ν = RaE and Ra = RaE in (3.14) produces the energy limit for
Newtonian flow, i.e.

2RaE = G(RaE) ⇒ G(ν) = 2
√

νRaE.
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Therefore, Eν(t) satisfies:

d

dt
Eν � −2 min(PrCP , C̃P )

[
1 − Ra + ν

2
√

νRaE

]
Eν(t) if Ra + ν < 2

√
νRaE. (3.15)

The minimum ratio (Ra + ν)/
√

ν is found when ν = Ra and energy stability is thus
first achieved for ν = Ra < RaE . The energy functional E(t) that we consider is for
ν = RaE , for which we have

d

dt
E � − min(PrCP , C̃P )

[
1 − Ra

RaE

]
E(t) if Ra < RaE (3.16)

3.2.2. Global asymptotic stability and finite time decay of ||u||(t) for Ra < RaE

The energy equations (2.7)–(2.8) for the perturbation may be rewritten as follows:

1

Pr

dH

dt
= Ra〈wθ〉 − B〈γ̇ 〉 − 〈γ̇ 2〉, (3.17a)

RaE

dK

dt
= RaE〈wθ〉 − RaE〈|∇θ |2〉. (3.17b)

We may note from (3.16) and (3.17) that, if Ra <RaE , then the energy E(t) of the
Bingham fluid flow (B > 0) also decays, since the energy stability analysis may proceed
by neglecting the Bingham term in (3.17). Thus, we may infer that the Bingham fluid
flow is at least as stable as the corresponding Newtonian fluid flow. The following
theorem, however, gives a more precise statement.

Theorem 2. Let E = (1/Pr)H +RaEK be the total energy of the Rayleigh–Bénard
system. There exist constants CP and CT S depending only on the dimension and the
domain of integration, such that Ra< RaE implies:

(i) Exponential decay of the total energy E:

E(t) � E(0) e−αt for t � 0.

(ii) Finite time decay of ‖u‖:

‖u‖(t) �

(
‖u‖(0) +

β2

αu

− β1

αu − α/2

)
e−αut +

β1

αu − α/2
e−αt/2 − β2

αu

for 0 � t � t0 and

‖u‖(t) = 0 for t � t0.

(iii) Exponential decay of ‖θ‖:

‖θ‖(t) �

√
2E(0)

RaE

e−αt/2 for 0 � t � t0

and

‖θ‖(t) �

√
2E(0)

RaE

e−αt0/2−C̃P (t−t0) for t � t0,

where

α = min(PrCP , C̃P )

(
1 − Ra

RaE

)
, αu = PrCP ,

β1 = PrRa

√
2E(0)

RaE

, β2 = PrBCTS



400 J. Zhang, D. Vola and I. A. Frigaard

and t0 is the root of(
‖u‖(0) +

β2

αu

− β1

αu − α/2

)
e−αut +

β1

αu − α/2
e−αt/2 − β2

αu

= 0.

Proof
(i) Assume that Ra <RaE and that E(t) > 0. Neglecting the yield stress dissipation,
we have

dE

dt
= (Ra + RaE)〈wθ〉 − B〈γ̇ 〉 − 〈γ̇ 2〉 − RaE〈|∇θ |2〉

� −
[
〈γ̇ 2〉 + RaE〈|∇θ |2〉

] [
1 − (Ra + RaE) sup

(ũ,θ̃ )∈S

{
〈w̃θ̃〉

〈 ˜̇γ 2〉 + RaE〈|∇θ̃ |2〉

}]
.

Then, following the Newtonian analysis leading to (3.16), we have

dE

dt
� − min(PrCP , C̃P )

(
1 − Ra

RaE

)
E,

for t � 0. Therefore, with α = min(PrCP , C̃P )

(
1 − Ra

RaE

)
,

E(t) � E(0) e−αt for t � 0. (3.18)

(ii) From (3.18), we see that

‖θ‖(t) �

√
2E(t)

RaE

�

√
2E(0)

RaE

e−αt/2 for t � 0. (3.19)

We assume ‖u‖ > 0, and substitute the above bound, with (3.2) and (3.4), into (3.17a):

d‖u‖
dt

� Pr

(
Ra

√
2E(0)

RaE

e−αt/2 − BCTS

)
− PrCp‖u‖ for t � 0. (3.20)

Denote

β1 = PrRa

√
2E(0)

RaE

, β2 = PrBCTS, αu = PrCP .

Then (3.20) combined with Gronwall’s lemma gives, for t � 0.:

‖u‖(t) �

(
‖u‖(0) +

β2

αu

− β1

αu − α/2

)
e−αut +

β1

αu − α/2
e−αt/2 − β2

αu

, (3.21)

It is evident that the first two terms above decay until dominated by the last term.
Therefore, let t0 be the root of(

‖u‖(0) +
β2

αu

− β1

αu − α/2

)
e−αut +

β1

αu − α/2
e−αt/2 − β2

αu

= 0.

Then (3.21) yields

‖u‖(t) = 0 for t � t0.

(iii) For all t � 0, the decay estimate (3.19) holds. From (2.8), when t � t0, we have
the faster decay:

d‖θ‖
dt

� −C̃P ‖θ‖.
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In this range:

‖θ‖(t) � ‖θ‖(t0) exp(−C̃P t) �

√
2E(0)

RaE

exp(−αt0/2 − C̃P (t − t0)).

Remark 3. Thus, for Ra � RaE , the Bingham fluid flow is also asymptotically
globally stable. Furthermore, the characteristic decay of the velocity in a finite time is
also found. The conditional bounds of Theorem 1 are therefore clearly not optimal
for this range of Ra. On the other hand, since RaE =RaL for the Newtonian fluid,
whereas theorem 1 gives linear stability also for Ra > RaL, we see that in terms of
stability conditions on Ra, Theorem 2 is also not optimal. We therefore consider how
the conditional bounds may be extended to Ra >RaE .

3.2.3. Conditional stability for Ra >RaE

Considering (2.7) and (2.8), we observe that for a sufficiently large initial
perturbation, the term B〈γ̇ 〉 scales only linearly with the perturbation, whereas all
other terms are quadratic in the perturbation. Thus, it seems likely that the Newtonian
limit RaE is also the global stability limit of the Bingham fluid flow, i.e. for sufficiently
large initial perturbation the yield stress term is insignificant. Therefore, for Ra > RaE ,
we expect to only find stability of the system (2.7) and (2.8), conditional on the size
of the initial perturbations ‖u‖(0) and ‖θ‖(0). Here, we consider an energy functional
E(t) defined by:

E(t) =
1

Pr
H (t) + RaK(t).

From (2.7), (2.8), we have

dE

dt
= 2RaE〈wθ〉 − 〈γ̇ 2〉 − RaE〈|∇θ |2〉 + (Ra − RaE)[2〈wθ〉 − 〈|∇θ |2〉] − B〈γ̇ 〉,

� (Ra − RaE)
(
2‖u‖‖θ‖ − C̃P ‖θ‖2

)
− BCTS‖u‖. (3.22)

We define F (‖u‖, ‖θ‖) by

F (‖u‖, ‖θ‖) = (Ra − RaE)
(
2‖u‖‖θ‖ − C̃P ‖θ‖2

)
− BCTS‖u‖,

which is a smooth function in the first quadrant of the (‖u‖, ‖θ‖)-plane. Under
the assumption that Ra > RaE , the stability of the system can be expected if the
initial perturbation (‖u‖(0), ‖θ‖(0)) is chosen to ensure both F (‖u‖(0), ‖θ‖(0)) < 0
and F (‖u‖(t), ‖θ‖(t)) < 0 for all t > 0. Geometrically, the condition that F (‖u‖(t),
‖θ‖(t)) < 0 for all t > 0, implies that the phase paths of (‖u‖, ‖θ‖) cross the level sets
E = constant, inwards only. Consequently, for stability we require that E(0) < E∗,
where

1

Pr
‖u‖2 + Ra‖θ‖2 = E∗,

is the largest quarter ellipse in the first quadrant of the (‖u‖, ‖θ‖)-plane, that touches
the curve F (‖u‖, ‖θ‖) = 0. The definition of E∗ is illustrated in figure 1(a) for
parameters Ra = 1750, RaE = 1707.8, B =10, Pr = 1, C̃P = π2, CT S =1. In general,
E∗ decays with Ra and Pr, but increases with B , as illustrated in figure 1(c, d).
It remains to consider the decay rate of the perturbation. We have the following
result.

Theorem 3. Let E(t) = H (t)/Pr + RaK(t) be the total energy of the Rayleigh–Bénard
system. There exists a constant E∗, depending only on the domain Ω and on Ra, Pr and
B , such that E(0) < E∗ implies
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Figure 1. (a) Illustration of the definition of E∗, for parameters Ra = 1750, RaE = 1707.8,
B =10, Pr = 1, C̃P = π2, CT S = 1; (b) variation of E∗ with Ra > RaE , other parameters as in
(a); (c) variation of E∗ with B , other parameters as in (a); (d) variation of E∗ with Pr, other
parameters as in (a).

(i) Decay of the total energy E:

E(t) <E(0) for t > 0,

with exponential decay of E, for t > t0 + t1, defined below.

(ii) Finite time decay of ‖u‖. There exist constants C∗ and q , such that:
If E∗ >C∗, then

‖u‖(t) �

(
‖u‖(0) +

BCTS

2CP

)
exp(−PrCP t) − BCTS

2CP

for 0 � t � t0,

‖u‖(t) = 0 for t � t0.

If E∗ � C∗, then

‖u‖(t) �

(
‖u‖(t1) +

BCTS

2CP

)
exp(−PrCP t) − BCTS

2CP

for t1 � t � t0 + t1

‖u‖(t) = 0, for t � t0 + t1.

(iii) Exponential decay of ‖θ‖:
If E∗ >C∗, then

‖θ‖(t) � ‖θ‖(t0) exp(−C̃P (t − t0)) for t � t0.
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If E∗ � C∗, then

‖θ‖(t) � ‖θ‖(t0 + t1) exp(−C̃P (t − t0 − t1)) for t � t0 + t1,

Here

t0 =
1

PrCP

ln

(
1 +

2CP ‖u‖(0)

BCTS

)
, t1 =

E(0) − C∗

q
.

Proof. (i) We note that E∗ depends only on Ω and on Ra, Pr, B . If E(0) < E∗,
then F (‖u‖(0), ‖θ‖(0)) < 0. There exists δ1 > 0, such that E(t) < E(0) for all 0 < t < δ1.
Since E(δ1/2) < E∗, starting from t = δ1/2, there exists δ2 > 0, such that E(t) < E(0)
for all 0 < t < δ1/2 + δ2. Repeating this procedure, we conclude that E(t) < E (0) for
t > 0. We use only the boundedness of E(t) below. Note that exponential decay of
E(t) will then follow from the decay implicit in parts (i) and (iii) of the theorem.

(ii) and (iii) We define C∗ by:

C∗ =
B2C2

T S

8Ra
.

If F (‖u‖(0), ‖θ‖(0)) < 0 and E(0) < C∗, then E(t) < C∗ and on bounding ‖θ‖ by√
2E(t)/Ra, (2.7) becomes:

d‖u‖
dt

� Pr
(
Ra‖θ‖ − BCTS

)
− PrCp‖u‖

� −PrBCTS

2
− PrCp‖u‖ for t > 0.

That is,

‖u‖(t) �

(
‖u‖(0) +

BCTS

2CP

)
exp(−PrCP t) − BCTS

2CP

for 0 � t � t0

and

‖u‖(t) = 0 for t � t0,

where

t0 =
1

PrCP

ln

(
1 +

2CP ‖u‖(0)

BCTS

)
.

As before, for t � t0, we have pure exponential decay of the temperature, from (2.8).

‖θ‖(t) � ‖θ‖(t0) exp(−C̃P (t − t0)) for t � t0.

We next show that even if E∗ >C∗, we can still expect finite decay of ‖u‖ and
exponential decay of ‖θ‖. We start from an arbitrary point (‖u‖(0), ‖θ‖(0)) satisfying
K � E(0) < E∗. Then E(t) < E(0) < E∗ owing to the boundedness of E(t), in (i) above.
Let

S = {(‖u‖, ‖θ‖) | C∗ � E � E(0)}.
Then S is a closed bounded subset on the (‖u‖, ‖θ‖)-plane, and we may define q:

−q = max
(‖u‖,‖θ‖)∈S

F (‖u‖, ‖θ‖).

Estimate (3.22) implies that

dE

dt
� F (‖u‖, ‖θ‖) � −q for t > 0.
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Hence,

E(t) � E(0) − qt for t > 0

and

E(t) < C∗ for t > t1 =
E(0) − C∗

q
.

Combining the decay result from the case E∗ <C∗(ii), we conclude that

‖u‖(t) �

(
‖u‖(t1) +

BCTS

2CP

)
exp(−PrCP t) − BCTS

2CP

for t1 � t � t0

and

‖u‖(t) = 0 for t � t0 + t1,

where now

t0 =
1

PrCP

ln

(
1 +

2CP ‖u‖(t1)

BCTS

)
.

Again for the temperature, once the velocity has decayed to zero, we have:

‖θ‖(t) � ‖θ‖(t0 + t1) exp(−C̃P (t − t0 − t1)) for t � t0 + t1.

Remark 4. Thus, under the conditions of Theorem 3, we have again finite time
decay of the velocity and (eventually) exponential decay of the temperature. As the
boundary E(0) = E∗ is approached, the decay time scales become infinite.

3.3. Summary of analytical results

To summarize our results, below the energy limit of the analogous Newtonian problem,
the Bingham problem is also asymptotically stable to all perturbations. Above the
energy stability limit, the Bingham problem is conditionally asymptotically stable
to perturbations of sufficiently small initial conditions. As Ra → ∞, the conditional
bounds approach zero, and as Ra → RaE , the conditional bounds become infinite.
Whenever the Bingham problem is asymptotically stable, we have found that the
velocity perturbation decays to zero in a finite time. The temperature perturbation
decays to zero exponentially, but at a faster rate once there is no convection.

The decay rates and stability bounds are governed by the constants C̃P , CP , CT S .
For parallel plates with rigid–rigid boundary conditions, π2 is the best possible for
C̃P . For CP the value is higher owing to the divergence, free constraint; Joseph (1965)
gives CP = 3.74π2. We have not found a value for CT S in the literature. However, the
exact value of CT S is not important since the aim here is to describe the qualitative
behaviour of the perturbation, rather than compute the exact stopping times or decay
rates from our bounds (we expect these to be conservative).

4. Computational solution and results
We have also computed the numerical solution of the system (2.1) and (2.2), with

boundary conditions (2.3) and (2.4) in a periodic domain. Computational solution of
an initial boundary-value problem is not always an effective way of determining exact
stability limits but, as explained in § 1, the usual tools of hydrodynamic stability are
not all available to us and direct computation is one of the few methods we can use.

A key dynamical feature of yield stress fluids is that they may come to rest in a finite
time, and we have seen this feature predicted in all our analytical results. The simplest
computational methods for these flows involve regularization of the effective viscosity



Yield stress effects on Rayleigh–Bénard convection 405

and such methods are often implemented in standard commercial CFD software.
However, they are ineffective at predicting stopping behaviour since sub-yield stress
flow behaviour is regularized by modelling as a highly viscous fluid. In order to
capture the finite time decay, it is necessary to use a more complex method that
properly resolves the yielding behaviour of the fluid. Finite time decay is preserved
in algorithms that are based on the augmented Lagrangian method, provided close
attention is paid to the time-stepping. The computations presented below have been
performed using the finite element code CROCO, based on the software component
library PELICANS, both developed at IRSN.

4.1. Outline of computational method

In short, the numerical strategy used to solve the system (2.1–2.2) follows closely that
proposed in Vola, Boscardin & Latché (2003). The methodology outlined in Vola
et al. (2003) has been developed so as to give a robust numerical scheme, able to cope
with a wide range of constitutive laws, without any regularization of the viscosity.
Material derivatives in both the momentum and energy equations are discretized
by a method of characteristics according to the splitting scheme outlined in § 2
and § 3.2 of Vola et al. (2003). For Newtonian fluids, when coupled to a Galerkin
discretization, this method leads to accurate and stable schemes under assumptions
that are weaker than the usual CFL conditions.

At each time step (size 
t), we must solve a Helmoltz problem (energy equation)
and a generalized Stokes problem (momentum and mass equations). For the sake of
readability, subscripts and superscripts referring to time discretization are omitted. An
integral formulation of the constitutive law (2.2) is defined using a thermodynamical
pseudo-potential ψ(γ̇ ):

τ ∈ ∂γ̇ ψ(γ̇ ),

where ∂γ̇ ψ denotes the sub-differential of ψ with respect to γ̇ . (See Ekeland & Témam
(1976), chapt. 1, § 5) for a discussion of sub-differentiability. Most of the commonly
used generalized Newtonian fluid models, including those with a yield stress, can be
characterized in this way. Loosely speaking, sub-differentiability is a weaker form of
differentiability and this is required for yield stress fluids since γ̇ is not everywhere
differentiable). This is characterized as follows:

τ ∈ ∂γ̇ ψ(γ̇ ) ⇔ ∀ζ ψ(ζ ) − ψ(γ̇ ) � τ : (ζ − γ̇ ),

where ζ : ζ =
∑

i,j ζ 2
ij . For the Bingham model, this pseudo-potential has the

following form:

ψ(γ̇ ) = 1
2
γ̇ 2 + Bγ̇ .

Using this characterization, the weak formulation of the momentum equations turns
into a variational inequality that is equivalent to the following minimization problem,
find u ∈ {v| ∇ · v =0} such that:

G(u) + F(γ̇ (u)) = min
v|∇ · v=0

[G(v) + F(γ̇ (v))], (4.1)

where

G(v) =
1

2
t Pr

∫
Ω

v · v dx −
∫

Ω

(
RaT δiz +

1


t Pr
v∗

)
· v dx, (4.2)

F(γ̇ (v)) =

∫
Ω

ψ(γ̇ (v)) dx, (4.3)

and where v∗ denotes the convective velocity found by the method of characteristics.
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We follow the decomposition–coordination method of Fortin & Glowinski (1982).
First, we introduce an auxiliary primal variable representing the rate of strain tensor γ̇

together with an associated constraint that ensures that the meaning of (4.1) remains
unchanged. This constraint and the incompressibility condition are then relaxed by an
augmented Lagrangian technique. The two Lagrangian multipliers are homogeneous
to the shear stress and pressure, respectively. The minimization problem (4.1) turns
into a four field saddle-point problem. The saddle-point problem is solved with a fully
decoupled variant of an algorithm of Uzawa type proposed in Fortin & Glowinski
(1982).

The choice of the approximation spaces (piecewise linear velocity and pressure,
piecewise constant auxiliary variables and corresponding multipliers, all on triangles),
is guided by various requirements described in Latché & Vola (2004). The non-
differentiality due to the constitutive law is now isolated in the step of the algorithm
associated with the optimality of the primal auxiliary variable representing γ̇ .
Moreover, thanks to the choice of the approximation spaces, this step turns into
a series of scalar minimization problems (variable γ̇ ) that can be solved on each
element, and analytically in the case of a Bingham fluid.

The semi-infinite theoretical domain is represented by a two-dimensional
computational domain of unit height, and length l = 2π/kx . Periodic boundary
conditions for all unknown fields are imposed on the vertical boundaries. Thus,
choice of kx , hence the periodicity, is an additional (numerical) parameter that is
not present in our analysis. Since our purpose is mostly to illustrate the previous
theoretical results, we have fixed kx =3 for all numerical results presented below,
unless otherwise stated. Additionally, we have set Pr = 1 throughout. Lastly, it is
necessary to prescribe an initial condition, and here we have used:

u = w = 0, p = 0 and θ = z(1 − z)(0.8 + 0.2 sin(x2)) at t = 0. (4.4)

for all computations. Time step and mesh convergence studies have been performed.
For the results following, the meshes consist of 1250 triangles and a time step of

t = 5 × 10−3 has been used.

4.2. Sub-critical Rayleigh number: Ra =1500

Here we have Ra <RaE =1707.8, and therefore expect decay of all perturbations in
the L2 norm. According to Theorem 2, stability is global, i.e. independent of the size
of the initial condition. Secondly, for any non-zero B the velocity should decay to
zero in a finite time and the temperature should decay exponentially. Figure 2 shows
the computed evolution of ‖u‖ and ‖θ‖, starting from the initial perturbation (4.4).
Results are shown for a Newtonian fluids and for two (quite small) Bingham numbers,
B = 0.01 and B = 0.1. We observe that the decay of the Bingham fluid perturbations
is qualitatively different to that of the Newtonian fluid. There is an initial viscous
decay away from the initial condition. For the smaller B , the Newtonian curve is
initially followed very closely. At longer times, the yield stress term dominates and we
see the rapid finite time decay of ‖u‖. We can also discern two distinct decay rates
for ‖θ‖, with faster decay after ‖u‖ =0

Apart from the decay rate observed, the way the fluid returns to its steady stratified
base state is different for the Bingham fluid. We know that the Newtonian stability
problem, even at Ra = RaE is characterized by a linear eigenmode. It is therefore
perhaps not surprising to observe that for the Newtonian fluid, the distribution of
the velocity is relatively unchanged as ‖u‖ → 0, i.e. the magnitude decreases. Figure 3
shows the distribution of γ̇ for the Newtonian fluid, at t =0.4 and t = 7.4. Even
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Figure 2. Evolution of ‖u‖ and ‖θ‖, for Ra = 1500, Pr = 1, at various Bingham numbers.
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Figure 4. Contours of γ̇ for Ra = 1500, Pr =1, Bingham fluid, B = 0.01: (a) t = 0.4;
(b) t = 2.25.

though the rate of strain has decayed by five orders of magnitude, the distribution is
very similar. We interpret this observation as the exponential decay of the least stable
eigenmode of the linearized stability problem.

The Bingham fluid decays in a fundamentally different way. Figure 4 shows the
distribution of γ̇ for the Bingham fluid with B =0.01, at t = 0.4 and t =2.25. At
t = 0.4, we can see in figure 2 that the velocity magnitude is similar to that for
the Newtonian fluid, as is its distribution. In this regime, at large rates of strain,
presumably the viscous dissipation terms are dominant and since B � 1, the yield
stress has little effect. Therefore, we see a velocity distribution that resembles the
modal Newtonian distribution. As ‖u‖ → 0, there is, however, a significant difference
as the yield stress begins to dominate. At t = 2.25, unyielded regions have appeared,
as shown explicitly in figure 5. The unyielded regions appear at the stagnation points
and within the rotating cell. Note that these are not material surfaces: fluid flows
into and out of the unyielded plug regions. Comparing with figure 4(b), we can see
that there are also regions that are only just yielded. With the no-slip boundary
conditions, purely rotational motion of the entire core does not appear possible. As
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(a)

(b)

Figure 5. Growth of the unyielded regions as the flow stops, Ra = 1500, Pr = 1, B = 0.01:
(a) t = 2.25; (b) t = 2.28. The flow stops at t = 2.29.

t increases, the unyielded plug regions grow very rapidly, concentrating the sheared
fluid in progressively thin layers until the flow stops.

4.3. Super-critical Rayleigh number: Ra = 2000

For super-critical Rayleigh numbers, Theorem 3 indicates that we should expect
conditional stability, with the bound depending on both Pr and B . In figure 1, we
have seen that typically the conditional bound on the initial conditions increases
with B and decreases with Pr and Ra. Consequently, we may verify the conditional
hypothesis by varying any of a number of parameters. Here we focus on estimating
a critical Bingham number for stability, with the initial condition (4.4) and for kx = 3.
After some iteration, we bracket the critical Bingham number as being between 0.571
and 0.572. Figure 6 shows the computed evolution of ‖u‖ and ‖θ‖ for these values.

For the larger Bingham number, the fluid velocity and temperature decay back to
the stratified steady state, in a qualitatively similar way to the sub-critical Rayleigh
number cases (i.e. finite time decay of the velocity and exponential decay of the
temperature, at two distinct rates). During the decay, we again see growth of the
unyielded plug regions initiated both in the rotating cells and at the stagnation points
between cells. Figure 7 shows the unyielded plug regions at t = 3.98.
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Figure 6. Evolution of ‖u‖ and ‖θ‖, for Ra = 2000, Pr = 1, at B = 0.571 and B = 0.572.

Figure 7. Unyielded regions of the stable solution for Ra = 2000, Pr = 1, B =0.572
at t = 3.98.

For the lower Bingham number, the perturbation is not damped and stable
secondary flow develops. Figure 8 shows the temperature field and streamlines at
t = 8 for this case. The fluid has settled into a self-sustained steady cellular motion,
reminiscent of the usual Rayleigh–Bénard cells found for a Newtonian fluid. To verify
this, we have also computed the Newtonian fluid problem for Ra = 2000. Figure 9
shows the temperature and velocity components, at fixed x in the channel, and
a comparison between the Newtonian and Bingham solutions. It appears that the
steady convective patterns are in some sense very similar for the Newtonian fluid and
for the Bingham fluid. What is surprising about this is first, that this is not obviously
a small B perturbation of the Newtonian flow and also that we are far from criticality
for the Newtonian flow.
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Figure 8. Unstable super-critical perturbation, B = 0.571, Ra = 2000, at t = 8:
(a) temperature T ; (b) streamlines.

On closer inspection however, we note that the differences in peak velocity in
figure 9 are significantly larger than the temperature differences. We suggest that the
streamlines of any sustained cellular motion would look qualitatively similar to the
Newtonian cells and this is all we are observing.

4.4. Marginal stability curves

It is also possible to construct marginal stability curves using the computational
solution. Such curves can be constructed with respect to any of the problem
parameters. This is extremely time consuming to do and of limited value, in that
the marginal stability curves are dependent on a particular initial condition, i.e. for
the two-dimensional Bingham flow there is no guarantee that the cellular motions are
attractors for all initial conditions that exceed the conditional stability bounds. An
additional complication comes when computing solutions at small kx . The transient
solutions may diverge from stability whenever there is a stable subharmonic cellular
motion, i.e. it is not possible to isolate one eigenmode as in the linear analysis. In
practice, this means that a limited range of wavenumbers is considered.
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In figure 10, we show one example of a computed marginal stability curve. We have
taken a relatively small B = 0.05, so that the Newtonian values may be used as an
initial guess. The marginal stability curve is computed for the initial condition (4.4)
and we take a range of wavenumbers about the Newtonian minimum. As expected,
the Bingham curve is displaced above the Newtonian curve. The cellular motions
when the critical values are exceeded are analogous to those reported above, i.e. the
Bingham fluid cells resemble those for the Newtonian fluid, at the same wavelength.

A final comment concerning the supercritical cellular motions is that we have not
observed unyielded plug regions in these flows, even when a range of wavenumbers
is considered, as here.

5. Discussion and additional results
We have focused our analysis on perhaps the simplest non-trivial case, that of a

two-dimensional plane channel with Dirichlet conditions satisfied on both top and
bottom plates. The two principal differences with the Newtonian flow are: (i) finite
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Figure 11. Schematic of the bifurcation diagram with respect to Ra and solution amplitude
A: (a) Newtonian, B =0; (b) Bingham, B > 0.

time decay of the velocity field to zero, whenever the flow is stable; (ii) above the
Newtonian critical Rayleigh number, Rac = RaE , we have a region of conditional
stability for sufficiently small initial perturbations and arbitrarily high Ra, and for
positive B .

The Newtonian system bifurcates at Rac. For Ra >Rac, the linear zero amplitude
branch becomes unstable, but a stable upper branch of nonlinear cellular motions
emerges, (see figure 11a). Our computations for B > 0 have also found stable cellular
motions and our analysis suggests that the unstable branch is displaced upwards.
Thus, for B > 0, the simplest plausible characterization of the bifurcation diagram
would be as in figure 11(b).

The analysis, essentially as it is, generalizes in a straightforward way to the other
usual boundary conditions, e.g. rigid–free and free–free. It is necessary only to replace
RaE with the corresponding Newtonian energy stability limit. In order to achieve
the finite time decay results, we must verify that the boundary conditions on the
perturbation do not permit rigid-body motions. For the free–free boundary conditions,
this means that linear motions of the fluid parallel to the walls must be discounted.
A number of other results may also be derived, as we outline below.

5.1. Heuristic analysis

Although we have used rigorous methods, it is also possible to develop a heuristic
analysis of the Rayleigh–Bénard paradigm for a yield stress fluid, by adapting classical
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order of magnitude arguments for Newtonian fluids that can be found in various
texts.

Consider a fluid particle of radius R̂ in a stratified thermal field with vertical
temperature gradient 
T̂ /L̂. Suppose that the centre of the particle is δT̂ hotter than
the surrounding thermal field. Because of buoyancy, the particle moves upwards at
speed Û . The particle loses heat via conduction to the surrounding fluid, at a rate
∝ K̂δT̂ /R̂2, but gains heat at a rate ∝ ρ̂ĉpÛ
T̂ /L̂. Consequently, the particle centre
remains hotter than its surroundings if

Û � Λ1

α̂δT̂ L̂


T̂ R̂2
,

for some dimensionless geometric constant Λ1. Here α̂ = K̂/(ρ̂ĉp) is the thermal
diffusivity of the fluid. On the other hand, the particle motion can only be sustained if
the buoyancy of the particle, ∝ ρ̂R̂3ĝβ̂δT̂ , exceeds the drag force on the fluid particle.
In the case of a yield stress fluid, this amounts to:

ρ̂R̂3ĝβ̂δT̂ � Λ2R̂µ̂Û + Λ3R̂
2τ̂Y ,

for dimensionless geometric constants Λ2, Λ3. Scaling δT̂ with 
T̂ , R̂ with L̂, and
dividing through by the buoyancy force, we see that the motion is only self-sustaining
if:

1 � Λ4

α̂µ̂

ρ̂ĝβ̂
T̂ L̂3
+ Λ5

τ̂Y

ρ̂ĝβ̂
T̂ L̂
= Λ4

1

Ra
+ Λ5B, (5.1)

for some dimensionless constants Λ4, Λ5. In the case where the fluid is stable, we
would expect that the third dimensionless parameter, Pr, also influences the decay
rate of perturbations to the basic state.

5.2. Residual stresses

As our steady base state we have considered a static temperature stratified fluid, and
have made the additional assumption, in (2.6), that there are no residual stresses.
Depending on how the fluid layer is formed there may indeed exist residual shear
stresses in the static layer, (e.g. due to thermal stresses in a geophysical setting). If
an estimate of the residual stresses τR

ij is available, the analysis presented can still be
followed through, but with a reduced yield stress. Suppose that the static steady-state
solution has residual stress τR

ij . Then we may assume that

τR � B,

since the fluid is static. In place of the kinetic energy equation (2.7), we may
straightforwardly derive:

1

Pr

dH

dt
= Ra〈wθ〉 − B〈γ̇ 〉 − 〈γ̇ 2〉 + 〈γ̇ : τR〉

� Ra〈wθ〉 − 〈(B − τR)γ̇ 〉 − 〈γ̇ 2〉. (5.2)

If say τR � φB for some φ ∈ (0, 1), then (5.2) is simply

1

Pr

dH

dt
� Ra〈wθ〉 − B̃〈γ̇ 〉 − 〈γ̇ 2〉,

where B̃ = (1 − φ)B > 0 is a reduced Bingham number. The preceding results are then
valid with B replaced by B̃ .
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5.3. Inclined channels

A similar situation exists for inclined channels. Suppose that the channel walls are
inclined at an angle ψ to the z-axis. The stratified temperature T = 1 − z still provides
a steady solution to the energy equation for static fluids. However, the stress and
pressure must now satisfy:

0 = −∂p

∂x
+

∂

∂x
τxx +

∂

∂z
τxz + Ra(1 − z) sinψ,

0 = −∂p

∂z
+

∂

∂x
τzx +

∂

∂z
τzz + Ra(1 − z) cos ψ.

We may observe that there is no solution to the above equations with zero shear
stress, and consequently no static steady state for a Newtonian fluid. For a yield stress
fluid the stress is indeterminate when unyielded, but we may find for example the
following candidate solution:

τxx = τzz = 0, p =
Ra

2

(
[2z − z2] cosψ + x sin ψ

)
, τxz = τzx =

Ra sinψ

2

(
z − 1

2

)2
.

Slow flows of yield stress fluids do not yield if there is an admissible unyielded stress
field. Thus, we see that provided

B > τ ⇒ B >
Ra sinψ

4
,

then a static steady solution exists. The static solution clearly has a residual stress,
and we may then use any of the analytical results of this paper, replacing B with

B̃ = B − Ra sinψ

4
.

We note that this effectively introduces an extra Ra-number dependency into the
stability results, interpreted in terms of B . In particular, for global asymptotic stability
and finite time decay of the velocity, for a layer of fluid that can be oriented at any
angle, it is necessary to have a fluid with

B >
RaE

4
.

5.4. Extensions to three-dimensional stability

In three dimensions, the energy equations (2.7) and (2.8) are still valid and at the
outset it appears that all the results can be straightforwardly extended to three
dimensions. However, this is not the case since the inequality (3.5) does not hold in
three-dimensions. Although it is possible to bound a norm of u by 〈γ̇ 〉, we may not
bound the L2 norm. The results in Témam & Strang (1980) give at best:

CT S,3‖u‖3/2 � 〈γ̇ 〉, (5.3)

for some O(1) positive constant CT S,3. This impacts the stability results in two ways.
First, we can no longer ensure finite time decay of the velocity. Secondly, where our
bounds are conditional on the size of perturbation, we must state conditions on ‖θ‖3

in order to ensure decay of the energy (i.e. ‖u‖ and ‖θ‖). However, because ‖θ‖3

is not bounded by ‖θ‖ (which is bounded by the decaying energy), the results are
evidently weaker. We outline below those results that can be established.
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5.4.1. Linear stability

Linear stability is always taken to mean that the perturbations are small in some
norm. Here, we must simply be more specific about which norm. We suppose that
‖θ‖3 is bounded for all t and let

ε = sup
t

‖θ‖3(t). (5.4)

It follows that ‖θ‖ ∼ O(ε) and we assume also that ‖u‖ ∼ O(ε). Summing (2.7) and
(2.8), using Holder’s inequality and (5.3), we have

dE

dt
= (Ra + 1)〈wθ〉 − B〈γ̇ 〉 − 〈γ̇ 2〉 − 〈|∇θ |2〉

� (Ra + 1)‖θ‖3‖w‖3/2 − BCT S,3‖u‖3/2 − 〈γ̇ 2〉 − 〈|∇θ |2〉
� [(Ra + 1)ε − BCT S,3]‖u‖3/2 − 〈γ̇ 2〉 − 〈|∇θ |2〉.

Thus, for sufficiently small ε <BCT S,3/(Ra + 1), we have exponential decay of the
energy, (here E = H/Pr +K).

5.4.2. Global stability

Let RaE,3 be the energy Rayleigh number of the three-dimensional problem for a
Newtonian fluid. Then as before, for Ra <RaE,3, E(t) = H (t)/Pr +RaE,3K(t) decays
according to

E(t) � E(0)e−λ1t ,

for some λ1 > 0; see Theorem 2. Again we cannot establish finite time decay. For those
flow configurations for which the Newtonian fluid becomes unstable first to a two-
dimensional perturbation (and for which linear and energy stability limits coincide),
we may also infer that there are no unstable three-dimensional perturbations to the
Bingham problem, provided Ra <RaE (since this would contradict the Newtonian
results).

5.4.3. Conditional stability

As before, we consider an energy functional E(t) = H (t)/Pr + RaK(t), for which
(2.7) and (2.8) give us:

dE

dt
= 2RaE,3〈wθ〉 − 〈γ̇ 2〉 − RaE,3〈|∇θ |2〉 + (Ra − RaE,3)[2〈wθ〉 − 〈|∇θ |2〉] − B〈γ̇ 〉,

� (Ra − RaE,3)
(
2‖u‖3/2‖θ‖3 − C̃P ‖θ‖2

)
− BCT S,3‖u‖3/2. (5.5)

We see immediately that the energy E(t) decays provided that the following uniform
bound can be assumed on ‖θ‖3(t):

sup
t

‖θ‖3(t) <
BCT S,3

2(Ra − RaE,3)
. (5.6)

For this conditional stability limit, we do not have a decay rate estimate. Compare,
however, with the linear stability result.

5.5. Final remarks

The stability results and analysis presented are illustrative of how to deal with
coupled visco-plastic fluid systems. The methods are equally applicable to systems
with concentration-dependent properties, double diffusive phenomena, etc. In Joseph
(1976), a wide class of motionless Newtonian flows are identified, governed by the
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Oberbeck–Boussinesq equations. Most of these flows could be extended to yield stress
fluids and would be amenable to the type of analysis we have used. With reference
to our discussion of inclined channels, the set of motionless steady flows that could
be studied is considerably larger than for Newtonian fluids. Presumably, most of
these flows would exhibit finite time decay of the velocity for sufficiently large yield
stresses. The ability to control the yield stress rapidly and reversibly therefore suggests
a means to switch on and off convective processes in mixing and heat transfer. These
are exciting areas for future study.

In comparison to other stability studies in visco-plastic fluid flows, the results are
a little different, since the base flow here is unyielded and static. Thus, there are no
normal modes in the linear stability results and even the energy stability problem
does not lead to a linear modal Euler–Lagrange problem. Although we suspect that
the bounds we have derived are conservative, absence of these two classical avenues
of attack leaves us without a clear method to compute the stability of the flow
directly. Our indirect method, via two-dimensional transient simulation, is effective
but also very slow to compute and not suitable for determining detailed parametric
marginal stability curves. On the other hand, the computational results indicate many
interesting features hidden from the analysis. In particular, flow behaviour as the
stability limits are approached and study of how the fluid stops both appear worth
studying further. Even though the wavenumber kx does not enter explicitly into our
analysis, preliminary computations indicate that the flow structures are sensitive to
kx , and this is also a topic for future study.
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